Association of 14-3-3gamma and phosphorylated bad attenuates injury in ischemic astrocytes.

نویسندگان

  • Xiao Qian Chen
  • Yin-Wan Wendy Fung
  • Albert Cheung Hoi Yu
چکیده

Our recent findings indicate an induced upregulation of 14-3-3gamma mRNA and protein in ischemic cortical astrocytes. Despite being brain-specific, the functional role of 14-3-3gamma in the brain still remains largely unknown. In this study, we show that among all the 14-3-3 isoforms, only the gamma isoform is inducible under ischemia in astrocytes. Furthermore, this upregulation of 14-3-3gamma may play a specific protective role in astrocytes under ischemia. Overexpression experiments and antisense treatment show that an elevation of 14-3-3gamma protein in astrocytes promotes survival, while a decrease in 14-3-3gamma enhances apoptosis in astrocytes under ischemia. Under ischemia, endogenous 14-3-3gamma binds p-Bad, thus preventing Bad from entering mitochondria to initiate apoptosis. Therefore, 14-3-3gamma is selectively induced during ischemia to protect astrocytes from apoptosis through p-Bad-related signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of 14-3-3c and phosphorylated bad attenuates injury in ischemic astrocytes

Our recent findings indicate an induced upregulation of 14-3-3c mRNA and protein in ischemic cortical astrocytes. Despite being brain-specific, the functional role of 14-3-3c in the brain still remains largely unknown. In this study, we show that among all the 14-3-3 isoforms, only the c isoform is inducible under ischemia in astrocytes. Furthermore, this upregulation of 14-3-3c may play a spec...

متن کامل

14-3-3gamma affects dynamics and integrity of glial filaments by binding to phosphorylated GFAP.

Recent findings indicated a protective role of GFAP in ischemic brain, injured spinal cord, and in neurodegenerative disease. We previously demonstrated that 14-3-3gamma, once thought to be neuronal specific, was up-regulated by ischemia in astrocytes and may play a specific protective role in astrocytes. Here we report that 14-3-3gamma associates with both soluble and filamentous GFAP in a pho...

متن کامل

Selective regulation of 14-3-3eta in primary culture of cerebral cortical neurons and astrocytes during development.

The 14-3-3 proteins exist predominantly in the brain and may play regulatory roles in cellular processes of growth, differentiation, survival, and apoptosis. The biological functions, however, of the various 14-3-3 isoforms (beta, epsilon, eta, gamma, and zeta) in the brain remain unclear. We have reported previously upregulation of 14-3-3gamma in ischemic astrocytes. In the present study, we r...

متن کامل

14-3-3gamma is upregulated by in vitro ischemia and binds to protein kinase Raf in primary cultures of astrocytes.

The 14-3-3 protein family comprises critical regulatory molecules involved in signaling during cell division, proliferation, and apoptosis. Despite extensive study, the functions of the 14-3-3 proteins in brain remain unclear. 14-3-3gamma, a subtype of the 14-3-3 family of proteins, was thought to be brain- and neuron-specific. Using RNA arbitrarily primed PCR, we identified an upregulated cDNA...

متن کامل

14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation.

It has been shown that MDMX inhibits the activity of the tumor suppressor p53 by primarily cooperating with the p53 feedback regulator MDM2. Here, our study shows that this inhibition can be overcome by 14-3-3gamma and Chk1. 14-3-3gamma was identified as an MDMX-associated protein via an immuno-affinity purification-coupled mass spectrometry. Consistently, 14-3-3gamma directly interacted with M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2005